Sabtu, 19 April 2014

tugas statistika bab 3,4,5,6

bab 3

BAB III UKURAN PEMUSATAN DATA

.1. Rumus Modus
a. Rumus Modus Untuk Data Tunggal
rumus statistika modus. untuk mencari modus dari data tunggal cukup dengan mencari nilai yang banyak keluar.
contoh ada sebuah data tunggal sebagai berikut 2,3,5,7,3,4,7,8,4,6,4,5,4
dari data tunggal di atas maka modusnya adalah 4 (keluar 4 kali)
b. Rumus Modus Untuk data Kelompok
.
keterangan
Mo = modus
c     = panjang kelas (interval kelas)
Lo  = batas bawah dari kelas modus,
fo    = frekuensi kelas modus,
f1    = frekuensi dari kelas sebelum kelas modus,
f2    = frekuensi dari kelas setelah kelas modus
contoh sederhana
Berapa modus dari data kelompok berikut dan bagaimana cara menghitung modusnya?
Batas Kelas
Frekuensi
19,5-24,5
100
24,5-30,5
120
30,5-35,5
70
35,5-40,5
150
40,5-45,5
90
45,5-50,5
80
50,5-55,5
30
...Interval Kelas (c) = 5
Batas Bawah Kelas modus = 35,5
fo = 150
f1 = 70
f2 = 90
jadi modusnya = 35,5 + 5 (80/(80+60)) = 35,5 + 5 (80/140) = 35,5 + 2,86 = 38,36
2. Rumus Rata-rata/Rataan/Mean
a. Rumus Rataan Data Tunggal
.
contoh sederhana : kita punya data tunggal 4,5,6 maka ratanya = (4+5+6)/3 =5,
b. Rumus Rata-rata/Rataan/Mean Data Kelompok
.
.
fi = frekuensi untuk nilai xi yang bersesuaian
xi
= rata-rata kelas
3. Rumus Median /Nilai Tengah
a. Rumus Median Data Tunggal
b. Rumus Median Data Kelompok

.
L = tepi bawah dari kelas limit yang mengandung median
Me = nilai median
n = banyaknya data
Fk = frekuensi kumulatif sebelum kelas yang memuat median
fm = frekuensi kelas yang memuat median
i= panjang intreval kelas
Contoh Soal
Kelas
Frekuensi
F Kumulatif
15-19
5
5
20-24
7
12
25-29
10
22
30-34
15
37
35-39
13
50
40-44
8
58
45-49
3
60
Dari tabel di atas dapat diketahui bahwa median adalah suku antaran suku ke 29 dan suku ke 30 dan kelas letak median ada di kelas 30-34. Jadi
Median = 29,5 +[(30-37)/15] 5 = 27,
4.Kuartil
Istilah kuartil dalam kehidupan kita sehari-hari lebih dikenal dengan istilah kuartal.
 Dalam dunia statistik, yang dimaksud dengan kuartil ialah titik atau skor atau nilai yang membagi seluruh distribusi frekuensi ke dalam empat bagian yang sama besar, yaitu masing masing sebesar ¼ N. jadi disini akan kita jumpai tiga buah kuartil, yaitu kuartil pertama (Q1), kuartil kedua (Q2), dan kuartil ketiga (Q3). Ketiga kuartil inilah yang membagi seluruh distribusi frekuensi dari data yang kita selidiki menjadi empat bagian yang sama besar, masing-masing sebesar ¼ N, seperti terlihat dibawah ini
            Jalan pikiran serta metode yang digunakan adalah sebagaimana yang telah kita lakukan pada saat kita menghitung median. Hanya saja, kalau median membagi seluruh distribusi data menjadi dua bagian yang sama besar, maka kuartil membagiseluruh distribusi data menjadi empat bagian yang sama besar.
Jika kita perhatikan pada kurva tadi, maka dapat ditarik pengertian bahwa Q2 adalah sama dengan Median(2/4 N=1/2 N).
            Untuk mencari Q1,Q2 dan Q3 digunakan rumus sebagai berikut:
  untuk data tunggal
 Q­­­­­n = 1 + ( n/4N-fkb)
                     fi
  untuk data kelompok
Qn = 1 + (n/4N-fkb)x i
            Fi
Qn = kuartil yang ke-n. karena titik kuartil ada tiga buah, maka n dapat diisi dengan bilangan: 1,2, dan 3.
1 = lower limit ( batas bawah nyata dari skor atau interval yang mengandung Qn).
N= Number of cases.
Fkb= frekuensi kumulatif yang terletak dibawah skor atau interval yang mengandung Qn.
Fi= frekuensi aslinya (yaitu frekuensi dari skor atau interval yang mengandung Qn).
i= interval class atau kelas interval.
Catatan: - istilah skor berlaku untuk data tunggal.
  - istilah interval berlaku untuk data kelompok.
Berikut ini akan dikemukakan masing-masing sebuah contoh perhitungan kuartil ke-1, ke-2, dan ke-3 untuk data yang tunggal dan kelompok.
1). Contoh perhitungan kuartil untuk data tunggal                           
            Misalkan dari 60 orang siswa MAN Jurusan IPA diperoleh nilai hasil EBTA bidang studi Fisika sebagaimana tertera pada table distribusi frekuensi berikut ini. Jika kita ingin mencari Q1, Q2, dan Q3 (artinya data tersebut akan kita bagi dalam empat bagian yang sama besar), maka proses perhitungannya adalah sebagai berikut:
Table 3.11. Distribusi frekuensi nilai hasil Ebta dalam bidang studi fisika dari 60 orang siswa MAN jurusan ipa, dan perhitungan Q1, Q2, dan Q3.
Nilai (x)
F
Fkb
46
45
44
43
42
41
40
39
38
37
36
35
2
2
3
5
F1 (8)
10
F1 (12)
F1 (6)
5
4
2
1
60= N
58
56
53
48
40
30
18
12
7
3
1
  Titik Q1= 1/4N = ¼ X 60 = 15 ( terletak pada skor 39). Dengan demikian dapat kita ketahui: 1= 38,50; fi = 6; fkb = 12
Q1 = 1 + ( n/4N-fkb) = 38,50 +(15-12)
                        Fi                           6
= 38,50 +0,50
= 39
  Titik Q2= 2/4N = 2/4 X 60 = 30 ( terletak pada skor 40). Dengan demikian dapat kita ketahui: 1= 39,50; fi = 12; fkb = 18
Q2 = 1 + ( n/4N-fkb) = 39,50 +(30-18)
                        Fi                                  12
= 39,50 +1,0
= 40,50
  Titik Q3= 3/4N = 3/4 X 60 = 45 ( terletak pada skor 42). Dengan demikian dapat kita ketahui: 1= 41,50; fi = 8; fkb = 40
Q3 = 1 + ( n/4N-fkb) = 41,50 +(45-40)
                        Fi                                  8
= 41,50+ 0,625
= 42,125
2). Contoh perhitungan kuartil untuk data kelompok
            Misalkan dari 80 orang siswa MAN jurusan IPS diperoleh skor hasil EBTA dalam bidan studi tata buku sebagaimana disajikan pada tabel distribusi frekuensi beikut ini ( lihat kolom 1 dan 2). Jika kita ingin mencari Q1, Q2, dan Q3, maka proses perhitungannya adalah sebagai berikut:
  Titik Q1= 1/4N = ¼ X 80 = 20 ( terletak pada interval 35-39). Dengan demikian dapat kita ketahui: 1= 34,50; fi = 7; fkb = 13, i= 5.
Q1 = 1 + ( n/4N-fkb)  Xi = 34,50 +(20-13)  X5
                        Fi                                       7
= 34,50 +5
= 39,50
  Titik Q2= 2/4N = 2/4 X 80 = 40 ( terletak pada interval 45-49). Dengan demikian dapat kita ketahui: 1= 44,50; fi = 17; fkb = 35, i= 5.
Q1 = 1 + ( n/4N-fkb)  Xi = 44,50 +(40-35)  X5
                        Fi                                       17
= 44,50 +1.47
= 45,97
  Titik Q3= 3/4N = 3/4 X 80 = 60 ( terletak pada interval 55-59). Dengan demikian dapat kita ketahui: 1= 54,50; fi = 7; fkb = 59, i= 5.
Q1 = 1 + ( n/4N-fkb)  Xi = 54,50 +(55-59)  X5
                        Fi                                       7
= 54,50 + 0,71
= 55,21
Tabel 3.12. distribusi frekuensi skor-skor hasil EBTA bidang studi tata buku dari 80 orang siswa man jurusan ips, berikut perhitungan Q1,Q2, dan Q3.
Nilai (x)
F
Fkb
70-74
65-69
60-64
55-59
50-54
45-49
40-44
35-39
30-34
25-29
20-24
3
5
6
7
7
17
15
7
6
5
2
80
77
72
66
59
52
35
20
13
7
2
Total
80= N
-
Diantara kegunaan kuartil adalah untuk mengetahui simetris (normal) atau a simetrisnya suatu kurva. Dalam hal ini patokan yang kita gunakan adalah sebagai berikut:
1). Jika Q3-Q2 = Q2- Q1 maka kurvanya adalah kurva normal.
2). Jika Q3-Q2 > Q2- Q1 maka kurvanya adalah kurva miring/ berat ke kiri(juling positif).
3). Jika Q3-Q2 < Q2- Q1 maka kurvanya adalah kurva miring/ berat ke kanan(juling negatif).
5. Desil
Desil ialah titik atau skor atau nilai yang membagi seluruh distribusi frekuensi dari data yang kita selidiki ke dalam 10 bagian yang sama besar, yang masing-masing sebesar 1/10 N. jadi disini kita jumpai sebanyak 9 buah titik desil, dimana kesembilan buah titik desil itu membagi seluruh distribusi frekuensi ke dalam 10 bagian yang sama besar.
Lambing dari desil adalah D. jadi 9 buah titik desil dimaksud diatas adalah titik-titik: D1, D2, D3, D4, D5, D6, D7, D8, dan D9.
Perhatikanlah kurva dibawah ini:
Untuk mencari desil, digunakan rumus sebagai berikut:
Dn= 1 +(n/10N – fkb)
                        Fi
Untuk data kelompok:
Dn= 1+ (n/10N- fkb) xi
                        Fi
Dn= desil yang ke-n (disini n dapat diisi dengan bilangan:1, 2, 3, 4, 5, 6, 7, 8, atau 9.
1= lower limit( batas bawah nyata dari skor atau interval yang mengandung desil ke-n).
N= number of cases.
Fkb= frekuensi kumulatif yang terletak dibawah skor atau interval yang mengandung desil ke-n.
Fi= frekuensi dari skor atau interval yang mengandung desil ke-n, atau frekuensi aslinya.
i=interval class atau kelas interval.
1). Contoh perhitungan desil untuk data tunggal
            Misalkan kita ingin mencari desil ke-1, ke-5, dan ke-9 atau D1, D5, dan D9 dari data yang tertera pada table yang telah dihitung Q1, Q2, dan Q3-nya itu.
  Mencari D1:
Titik D1= 1/10N= 1/10X60= 6 (terletak pada skor 37). Dengan demikian dapat kita ketahui: 1= 5,50; fi= 4, dan fkb= 3.
D1= 1 + (1/10N-fkb) ---D1=36,50 (6-3)
                        Fi                                 4
            = 36,25
  Mencari D5:
Titik D5= 5/10N= 5/10X60= 30 (terletak pada skor 40). Dengan demikian dapat kita ketahui: 1= 39,50; fi= 12, dan fkb= 18.
D1= 1 + (5/10N-fkb) ---D1=39,50 (30-18)
                        Fi                                 12
            = 40,50
  Mencari D9:
Titik D9= 9/10N= 9/10X60= 54 (terletak pada skor 44). Dengan demikian dapat kita ketahui: 1= 43,50; fi= 3, dan fkb= 53.
D1= 1 + (9/10N-fkb) ---D1= 43,50 (54-53)
                        Fi                                 3
            = 43,17
Tabel 3.13. Perhitungan desil ke-1, desil ke-5 dan desil ke-9 dari data yang tertera pada table (diatas)  kuartil.
Nilai (x)
F
Fkb
46
45
44
43
42
41
40
39
38
37
36
35
2
2
3
5
8
10
12
6
5
4
2
1
60= N
58
56
53
48
40
30
18
12
7
3
1
2). Contoh perhitungan desil untuk data kelompok
            Misalkan kita ingin mencari D3 dan D7 dari data yang tercantum pada table 3.12, proses perhitungannya adalah sebagai berikut:
Table 3.14. Perhitungan desil ke-3 dan desil ke-7 dari data yang tertera pada table 3.12.
Nilai (x)
F
Fkb
70-74
65-69
60-64
55-59
50-54
45-49
40-44
35-39
30-34
25-29
20-24
3
5
6
7
7
17
15
7
6
5
2
80
77
72
66
59
52
35
20
13
7
2
Total
80= N
-
  Mencari D3:
Titik D3= 3/10N= 3/10X80= 24 (terletak pada interval 40-44). Dengan demikian dapat kita ketahui: 1= 39,50; fi= 15, dan fkb= 20.
D3= 1 + (3/10N-fkb) xi=39,50 (24-20) x 5
                        Fi                           15
            = 39,50+ 20= 39,50 + 1,33= 40,83
                           15
  Mencari D7:
Titik D7= 7/10N= 7/10X80= 56 (terletak pada interval 50-54). Dengan demikian dapat kita ketahui: 1= 49,50; fi= 7, dan fkb= 52.
D7= 1 + (7/10N-fkb) xi=49,50 (50-54) x 5
                        Fi                           7
            = 49,50+ 20= 49,50 + 2,86= 40,83
                            7
            Diantara kegunaan desil ialah untuk menggolongkan-golongkan suatu distribusi data ke dalam sepuluh bagian yang sama besar, kemudian menempatkan subjek-subjek penelitian ke dalam sepuluh golongan tersebut.
6. Persentil
Persentil yang biasa dilambangkan P, adalah titik atau nilai yang membagi suatu distribusi data menjadi seratus bagian yang sama besar. Karena itu persentil sering disebut ukuran perseratusan.
      Titik yang membagi distribusi data ke dalam seratus bagian yang sama besar itu ialah titik-titik: P1, P2, P3, P4, P5, P6, … dan seterusnya, sampai dengan P99. jadi disini kita dapati sebanyak 99 titik persentil yang membagi seluruh distribusi data ke dalam seratus bagian yang sama besar, masing-masing sebesar 1/ 100N atau 1%, seperti terlihat pada kurva dibawah ini:
Untuk mencari persentil digunakan rumus sebagai berikut:
Untuk data tunggal:
Pn= 1 +(n/10N – fkb)
                        Fi
Untuk data kelompok:
Pn= 1+ (n/10N- fkb) xi
                        Fi
Pn= persentil yang ke-n (disini n dapat diisi dengan bilangan-bilangan:1, 2, 3, 4, 5, dan seterusnya sampai dengan 99.
1= lower limit( batas bawah nyata dari skor atau interval yang mengandung persentil ke-n).
N= number of cases.
Fkb= frekuensi kumulatif yang terletak dibawah skor atau interval yang mengandung persentil ke-n.
Fi= frekuensi dari skor atau interval yang mengandung persentil ke-n, atau frekuensi aslinya.
i= interval class atau kelas interval.
Tabel. 3.15. Perhitungan persentil ke-5, persentil ke-20 dan persentil ke-75 dari data yang tertera pada tabel 3.13.
Nilai (x)
F
Fkb
70-74
65-69
60-64
55-59
50-54
45-49
40-44
35-39
30-34
25-29
20-24
3
5
6
7
7
17
15
7
6
5
2
80
77
72
66
59
52
35
20
13
7
2
Total
80= N
-
1). Contoh perhitungan desil untuk data tunggal
            Misalkan kita ingin mencari persentil ke-5 (P5), persentil ke-20 (P20), dan ke-75 (P75),dari data yang disajikan pada tabel 3.13 yang telah dihitung desilnya itu. Cara menghitungnya adalah sebagai berikut:
  Mencari persentil ke-5 (P5):
Titik P5= 5/10N= 5/10X60= 3 (terletak pada skor 36). Dengan demikian dapat kita ketahui: 1= 35,50; fi= 2, dan fkb= 1.
P5= 1 + (5/10N-fkb) =36,50 +(3-1)
                        Fi                        2
            = 36,50
  Mencari persentil ke-75 (P75):
Titik P75= 75/10N= 75/10X60= 45 (terletak pada skor 42). Dengan demikian dapat kita ketahui: 1= 41,50; fi= 8, dan fkb= 40
P75= 1 + (75/10N-fkb) =41,50 +(45-40)
                        Fi                           8
            = 42,125
2). Cara mencari persentil untuk data kelompok
            Misalkan kembali ingin kita cari P35 dan P95 dari data yang disajikan pada tabel 3.14.
  Mencari persentil ke-35 (P35):
Titik P35= 35/100N= 35/100X80= 28 (terletak pada interval 40-44). Dengan demikian dapat kita ketahui: 1= 39,50; fi= 15, dan fkb= 20, i=5
P35= 1 + (35/100N-fkb) Xi =39,50 +(45-40) X 5
                        Fi                                      8
            = 39,50+2,67
            = 42,17
  Mencari persentil ke-95 (P95):
Titik P95= 95/100N= 95/100X80= 76 (terletak pada interval 65-69). Dengan demikian dapat kita ketahui: 1= 64,50; fi= 5, dan fkb= 72, i=5
P95= 1 + (95/100N-fkb) Xi =64,50 +(65-69) X 5
                        Fi                                      5
            = 64,50+4
            = 68,50
Tabel 3.16. Perhitungan persentil ke-35 dan persentil ke-95 dari data yang tertera pada tabel 3.14.
Nilai (x)
F
Fkb
70-74
65-69
60-64
55-59
50-54
45-49
40-44
35-39
30-34
25-29
20-24
3
5
6
7
7
17
15
7
6
5
2
80
77
72
66
59
52
35
20
13
7
2
Total
80= N
-
            Kegunaan persentil dalam dunia pendidikan adalah:
  1. Untuk mengubah rawa score (raw data) menjadi standard score (nilai standar).
Dalam dunia pendidikan, salah satu standard score yang sering digunakan adalah eleven points scale ( skala sebelas nilai) atau dikenal pula dengan nama standard of eleven (nilai standard sebelas) yang lazim disingkat dengan stanel.
Pengubahan dari raw score menjadi stanel itu dilakukan dengan jalan menghitung: P1- P3- P8- P21- P39- P61- P79- P92- P97- dan P99.
Jika data yang kita hadapi berbentuk kurva normal (ingat: norma atau standar selalu didasarkan pada kurva normal itu), maka dengan 10 titik persentil tersebut diatas akan diperoleh nilai-nilai standar sebanyak 11 buah, yaitu nilai-nilai 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, dan 10.
  1. Persentil dapat digunakan untuk menentukan kedudukan seorang anak didik, yaitu: pada persentil keberapakah anak didik itu memperoleh kedudukan ditengah-tengah kelompoknya.
  2. Persentil juga dapat digunakan sebagai alat untuk menetapkan nilai batas lulus pada tes atau seleksi.
Misalkan sejumlah 80 orang individu seperti yang tertera pada tabel 3.16. itu hanya akan diluluskan 4 orang saja (=4/ 80 X 100%= 5%) dan yang tidak akan diluluskan adalah 76 orang (= 76X80 X 100%=95%), hal ini berarti bahwa P95 adalah batas nilai kelulusan. Mereka yang nilai-nilainya berada pada P95 kebawah, dinyatakan tidak lulus, sedangkan diatas P95 dinyatakan lulus. Dalam perhitungan diatas telah kita peroleh P95= 68,50; berarti yang dapat diluluskan adalah mereka yang nilainya diatas 68,50 yaitu nilai 69 ke atas.
                                                   
Sumber :
Sudjana. (1991). In Statistika. Bandung: Tarsito.





Jumat, 18 April 2014

bab 4

tugas statistika bab 4

BAB 4
UKURAN PENYIMPANGAN

Pengukuran penyimpangan adalah suatu ukuran yang menunjukkan tinggi  rendahnya perbedaan data yang diperoleh dari rata-ratanya. Ukuran penyimpangan digunakan untuk mengetahui luas penyimpangan data atau homogenitas data. Dua variabel data yang memiliki mean sama belum tentu memiliki kualitas yang sama, tergantung dari besar atau kecil ukuran penyebaran datanya. Ada bebarapa macam ukuran penyebaran data, namun yang umum digunakan adalah standar deviasi.
Macam-macam ukuran penyimpangan data adalah :
  1. Jangkauan (range)
  2. Simpangan rata-rata (mean deviation)
  3. Simpangan baku (standard deviation)
  4. Varians (variance)
  5. Koefisien variasi (Coefficient of variation)
1. Jangkauan (range)
Range adalah salah satu ukuran statistik yang menunjukan jarak penyebaran data antara nilai terendah (Xmin) dengan nilai tertinggi (Xmax). Ukuran ini sudah digunakan pada pembahasan daftar distribusi frekuensi. Adapun rumusnya adalah
1
3
Contoh : 
Berikut ini nilai ujian semester dari 3 mahasiswa
A = 60 55 70 65 50 80 40
B = 50 55 60 65 70 65 55
C = 60 60 60 60 60 60 60
Dari data diatas dapat diketahui bahwa
A = memiliki Xmax=80, Xmin= 40 , R = 40 , meanya 60
B = memiliki Xmax=70, Xmin= 50 , R = 20 , meanya 60
C = memiliki Xmax=60, Xmin= 60 , R = 0 , meanya 60
Dari contoh di atas dapat disimpulkan bahwa :
a. Semakin kecil rangenya maka semakin homogen distribusinya
b. Semakin besar rangenya maka semakin heterogen distribusinya
c. Semakin kecil rangenya, maka meannya merupakan wakil yang representatif
d. Semakin besar rangenya maka meannya semakin kurang representatif
2. Simpangan Rata-rata (mean deviation)
Simpangan rata-rata merupakan penyimpangan nilai-nilai individu dari nilai rata-ratanya. Rata-rata bisa berupa mean atau median. Untuk data mentah simpangan rata-rata dari median cukup kecil sehingga simpangan ini dianggap paling sesuai untuk data mentah. Namun pada umumnya, simpangan rata-rata yang dihitung dari mean yang sering digunakan untuk nilai simpangan rata-rata.
  • Data tunggal dengan seluruh skornya berfrekuensi satu
1
dimana xi merupakan nilai data
  • Data tunggal sebagian atau seluluh skornya berfrekuensi lebih dari satu
2
dimana xi merupakan nilai data
  • Data kelompok ( dalam distribusi frekuensi)
2
dimana xi merupakan tanda kelas dari interval ke-i dan fi merupakan frekuensi interval ke-i
Contoh :
Dari tabel diperoleh 1
2
1
3. Simpangan Baku (standard deviation)
Standar deviasi merupakan ukuran penyebaran yang paling banyak digunakan. Semua gugus data dipertimbangkan sehingga lebih stabil dibandingkan dengan ukuran lainnya. Namun, apabila dalam gugus data tersebut terdapat nilai ekstrem, standar deviasi menjadi tidak sensitif lagi, sama halnya seperti mean.
Standar Deviasi memiliki beberapa karakteristik khusus lainnya. SD tidak berubah apabila setiap unsur pada gugus datanya di tambahkan atau dikurangkan dengan nilai konstan tertentu. SD berubah apabila setiap unsur pada gugus datanya dikali/dibagi dengan nilai konstan tertentu. Bila dikalikan dengan nilai konstan, standar deviasi yang dihasilkan akan setara dengan hasilkali dari nilai standar deviasi aktual dengan konstan.
Rumus Simpangan Baku untuk Data Tunggal
  • untuk data sample menggunakan rumus
11
  • untuk data populasi menggunkan rumus
1
Contoh :
Selama 10 kali ulangan semester ini sobat mendapat nilai 91, 79, 86, 80, 75, 100, 87, 93, 90,dan 88. Berapa simpangan baku dari nilai ulangan sobat?
Jawab
Soal di atas menanyakan simpangan baku dari data populasi jadi menggunakan rumus simpangan baku untuk populasi.
Kita cari dulu rata-ratanya
rata-rata = (91+79+86+80+75+100+87+93+90+88)/10 = 869/10 = 85,9
3
Kita masukkan ke rumus
1
Rumus Simpangan Baku Untuk Data Kelompok
  • untuk sample menggunakan rumus
2
  • untuk populasi menggunakan rumus
21
Contoh :
Diketahui data tinggi badan 50 siswa samapta kelas c adalah sebagai berikut
4
hitunglah berapa simpangan bakunya
1. Kita cari dulu rata-rata data kelompok tersebut
5
2. Setelah ketemu rata-rata dari data kelompok tersebut kita bikin tabel untuk memasukkannya ke rumus simpangan baku
6
4. Varians (variance)
Varians adalah salah satu ukuran dispersi atau ukuran variasi.  Varians dapat menggambarkan bagaimana berpencarnya suatu data kuantitatif.  Varians diberi simbol  σ2 (baca: sigma kuadrat) untuk populasi dan untuk ssampel.
Selanjutnya kita akan menggunakan simbol s2  untuk varians karena umumnya kita hampir selalu berkutat dengan sampel dan jarang sekali berkecimpung dengan populasi.
Rumus varian atau ragam data tunggal untuk populasi
01
Rumus varian atau ragam data tunggal untuk sampel
02
Rumus varian atau ragam data kelompok untuk populasi
03
Rumus varian atau ragam data kelompok untuk sampel
04
Keterangan:
σ2 = varians atau ragam untuk populasi
S2 = varians atau ragam untuk sampel
fi = Frekuensi
xi = Titik tengah
x¯ = Rata-rata (mean) sampel dan   μ = rata-rata populasi
=  Jumlah data
5. Koefisien variasi (Coefficient of variation)
Koefisien variasi merupakan suatu ukuran variansi yang dapat digunakan untuk membandingkan suatu distribusi data yang mempunyai satuan yang berbeda. Kalau kita membandingkan berbagai variansi atau dua variabel yang mempunyai satuan yang berbeda maka tidak dapat dilakukan dengan menghitung ukuran penyebaran yang sifatnya absolut.
Koefisien variasi adalah suatu perbandingan antara simpangan baku dengan nilai rata-rata dan dinyatakan dengan persentase.
.
Besarnya koefisien variasi akan berpengaruh terhadap kualitas sebaran data. Jadi jika koefisien variasi semakin kecil maka datanya semakin homogen dan jika koefisien korelasi semakin besar maka datanya semakin heterogen.
Daftas Pustaka :
Suharyadi, & Purwanto. (2009). In Statistika untuk Ekonomi dan Keuangan Modern. Jakarta: Salemba Empat.
Sudjana. (1991). In Statistika. Bandung: Tarsito.
http://www.smartstat.info/statistika/statisika-deskriptif/ukuran-penyebaran-measures-of-dispersion.html
http://rumushitung.com/2013/04/05/rumus-simpangan-baku




 

bab 5

BAB 5
MOMEN, KEMIRINGAN, DAN KURTOSIS


Skewness and Kurtosis
Rata-rata dan ukuran penyebaran dapat menggambarkan distribusi data tetapi tidak cukup untuk menggambarkan sifat distribusi. Untuk dapat menggambarkan karakteristik dari suatu distribusi data, kita menggunakan konsep-konsep lain yang dikenal sebagai kemiringan (skewness) dan keruncingan (kurtosis).
Skewness
Kemiringan (skewness) berarti ketidaksimetrisan. Sebuah distribusi dikatakan simetris apabila nilai-nilainya tersebar merata disekitar nilai rata-ratanya. Sebagai contoh, distribusi data berikut simetris terhadap nilai rata-ratanya, 3.
x
1
2
3
4
5
 frek (f)
5
9
12
9
5
Pada contoh gambar berikut, distribusi data tidak simetris. Gambar pertama miring (menjulur) ke arah kiri dan gambar ke-2 miring ke arah kanan.



Pada distribusi data yang simetris, mean, median dan modus bernilai sama.


Beberapa langkah-langkah perhitungan digunakan untuk menyatakan arah dan tingkat kemiringan dari sebaran data. Langkah-langkah tersebut diperkenalkan oleh Pearson.
Koefisien kemiringan(Coefficient of Skewness):

Interpretasi: Untuk distribusi data yang simetris, Sk = 0. Apabila distribusi data menjulur ke kiri (negatively skewed), Sk bernilai negatif, dan apabila menjulur ke kanan (positively skewed), SK bernilai positif. Kisaran untuk SK antara -3 dan 3.
Ukuran kemiringan yang lain adalah koefisien β1 (baca 'beta-satu'):

dimana:
Interpretasi:
Distribusi dikatakan simetris apabila nilai b1 = 0. Skewness positif atau negatif tergantung pada nilai b1 apakah bernilai positif atau negatif.
Ukuran Skewness yang sering digunakan:
Skewness Populasi:





Skewness Sampel:



Source: D. N. Joanes and C. A. Gill. "Comparing Measures of Sample Skewness and Kurtosis". The Statistician 47(1):183–189.
atau formula berikut (MS Excel):

s = standar deviasi
NB: kedua formula di atas menghasilkan nilai skewness yang sama
Interpretasi:
Distribusi dikatakan simetris apabila nilai g1 = 0. Skewness positif atau negatif tergantung pada nilai g1 apakah bernilai positif atau negatif.
Menurut Bulmer, M. G., Principles of Statistics (Dover, 1979):
  • highly skewed: jika skewness kurang dari −1 atau lebih dari +1
  • moderately skewed: jika skewness antara −1 dan −½ atau antara +½ dan +1.
  • approximately symmetric: jika skewness is berada di antara −½ dan +½.
Kurtosis
Kurtosis merupakan ukuran untuk mengukur keruncingan distribusi data.



Distribusi pada gambar di atas semuanya simetris terhadap nilai rata-ratanya. Namun bentuk ketiganya tidak sama. Kurva berwarna biru dikenal sebagai mesokurtik (kurva normal), kurva berwarna merah dikenal sebagai leptokurtik (kurva runcing) dan kurva berwarna hijau dikenal sebagai platikurtik (kurva datar).
Kurtosis dihitung dengan menggunakan koefisien Pearson, β2 (baca 'beta - dua').



dimana:
Ukuran Kurtosis yang sering digunakan:
Kurtosis Populasi:



Kurtosis:
Excess Kurtosis: 

Kurtosis Sampel:



atau formula berikut (MS Excel):

s = standar deviasi
NB: Excel menggunakan nilai Excess Kurtosis. Hasil perhitungan dari kedua formula di atas, menghasilkan nilai yang sama
Interpretasi:
Distribusi dikatakan:
  • Mesokurtik (Normal) jika b2 = 3
  • Leptokurtik jika b2 > 3
  • platikurtik jika b2 < 3

Analisis Korelasi Product Moment dalam Statistika


Analisis korelasi merupakan salah satu teknik statistik yang digunakan untuk menganalisis hubungan antara dua variabel atau lebih yang bersifat kuantitatif. Salah satu dari analisis korelasi tersebut adalah analisis korelasi product moment (Pearson). Variabel yang digunakan disini terbagi dua yaitu variabel bebas (x) dengan variabel terikat (y), dengan ketentuan data memiliki syarat-syarat tertentu.

Korelasi Pearson Product Moment (r) dapat diformulasikan sbb:



dengan ketentuan −1 ≤ r ≤ r . Dan interpretasi koefisien korelasi nilai r ini dapat dirangkum dalam tabel berikut:



Langkah-langkah yang diperlukan untuk uji korelasi Pearson Product Moment adalah sebagai berikut :
  1. Rumuskan hipotesis Ha dan Ho dalam bentuk kalimat.
  2. Rumuskan hipotesis Ha dan Ho dalam bentuk statistik.
  3. Buat tabel pembantu.
  4. Tentukan r
  5. Tentukan nilai KP
  6. Lakukan uji signifikansi.
  7. Tentukan α , dengan derajat bebas db = n − 2 .
  8. Tentukan konklusi
SUMBER :
http://navy.blogspot.com/2013/10/analisis-korelasi-product-moment-dalam.html 




 
Luas dibawah kurva satu.
Daftar distribusi normal berisikan nilai-nilai F untuk peluang 0,01 dan 0,05 dengan
derajat kekebasan v1 dan v2. Peluang ini sama dengan luas daerah ujung kanan yang
diarsir, sedangkan derajat kekebasan pembilang (v1 ) ada pada baris paling atas dan
derajat kebebasan penyebut (v2) pada kolom paling kiri.
 
Notasi lengkap untuk nilai-nilai F dari daftar distribusi F dengan peluang p dan dk = (v1,v2) adalah Fp(v1,v2). Demikianlah untuk contoh kita didapat :
F0.05(24,8) = 3.12 dan F0,01(24,8 )= 5.28.
Meskipun daftar yang diberikan hanya untuk peluang p = 0.05 dan p = 0.01, tetapi sebenarnya masih bisa didapat nilai-nilai F dengan peluang 0,99 dan 0,95. Untuk ini digunakan hubungan :
 
Dalam rumus diatas perhatikan antara p dan (1- p) dan pertukaran antara derajat kebebasan (v1, v2 ) menjadi (v2, v1).
sumber;
http://www.riny.blogspot.html
http://wikipedia_statistika.html

6 komentar:

  1. Maksud dari simpangan baku populasi
    -^x-xi dibawahnya 5,1 bawah lagi -6,9 bawah lagi 0,1 bawah lagi -5,9 bawah lagi -10,9 itu apaan ?dapat dari mana

    BalasHapus
  2. nilai ujian statistik mahasiswa prodi ekonomi kelas A12 dan kelas A13
    A12 : 80 83 82 70 74 60 90 84 93 86 85 74 75 70 76 90 87 76 68 80
    A13 : 87 86 87 83 90 94 65 68 69 90 93 84 85 97 60 65 74 73 76 78
    Buktikan hipotesis bahwa tidak terdapat perbedaan yang signifikan antara nilai ujian statistik mahasiswa prodi ekonomi

    BalasHapus
  3. Jumlah kredit
    Jutaan rupiah. Frekuensi
    10-19. 1
    20-29. 3
    30-39. 8
    40-49. 15
    50-59. 32
    60-69. 20
    70-79. 14
    80-89. 6
    90-99. 1

    Berdasarkan data trsebut di atas maka

    1 hitunglah koefesien kemiringannya dengan menggunakan nilai kuartil

    2. Tentukan model distribusi dari data d atas di tinjau dari segi kemiringannya

    3. Hitunglah koefisien keruncingannya ( kurtosis)
    4. Tentukan model distribusi dari data di atas di tinjau dari segi keruncingannya.

    BalasHapus
  4. genesis noir switch - LCbet.com fun88 soikeotot fun88 soikeotot 카지노 카지노 dafabet dafabet 8209Best Live Football Prediction Site for Free

    BalasHapus
  5. The Game: Top 10 slots and casinos to play in 2021 - JTM Hub
    Top 천안 출장안마 10 slots 문경 출장안마 and casinos to play 동해 출장안마 in 2021 · 충주 출장마사지 Wolf Gold · Rainbow Riches · Red Tiger · Supernova · Sweet Bonanza · Wild 계룡 출장마사지 Gold.

    BalasHapus